Dendritic cell chemotaxis in 3D under defined chemokine gradients reveals differential response to ligands CCL21 and CCL19.

نویسندگان

  • Ulrike Haessler
  • Marco Pisano
  • Mingming Wu
  • Melody A Swartz
چکیده

Dendritic cell (DC) homing to the lymphatics and positioning within the lymph node is important for adaptive immunity, and is regulated by gradients of CCL19 and CCL21, ligands for CCR7. Despite the importance of DC chemotaxis, it is not well understood how DCs interpret gradients of these chemokines in a complex 3D microenvironment. Here, we use a microfluidic device that allows rapid establishment of stable gradients in 3D matrices to show that DC chemotaxis in 3D can respond to CCR7 ligand gradients as small as 0.4%, which helps explain how DCs sense lymphatic vessels in an environment where broadcast distance for chemokine diffusion is hindered by convective flows into the vessel. Interestingly, DCs displayed similar sensitivities to both chemokines at small gradients (≤ 60 nM/mm), but migrated more efficiently towards higher gradients of CCL21, which unlike CCL19 binds strongly to matrix proteoglycans and signals without the need for internalization. Furthermore, cells preferentially migrated towards CCL21 when exposed to equal and opposite gradients of CCL21 and CCL19 simultaneously, even when matrix-binding of CCL21 was prevented. Although these ligands have similar binding affinity to CCR7, our results demonstrate that, in a 3D environment, CCL21 is a more potent directional cue for DC migration than CCL19. These findings provide new quantitative insight into DC chemotaxis in a physiological 3D environment and suggest how CCL19 and CCL21 may signal differently to fine-tune DC homing and positioning within the lymphatic system. These results also have broad relevance to other systems of cell chemotaxis, which remain poorly understood in the 3D context.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A microfluidic device for measuring cell migration towards substrate-bound and soluble chemokine gradients

Cellular locomotion is a central hallmark of eukaryotic life. It is governed by cell-extrinsic molecular factors, which can either emerge in the soluble phase or as immobilized, often adhesive ligands. To encode for direction, every cue must be present as a spatial or temporal gradient. Here, we developed a microfluidic chamber that allows measurement of cell migration in combined response to s...

متن کامل

Homeostatic lymphoid chemokines synergize with adhesion ligands to trigger T and B lymphocyte chemokinesis.

Homeostatic chemokines such as CCL19, CCL21, and CXCL13 are known to elicit chemotaxis from naive T and B cells and play a critical role in lymphocyte homing to appropriate zones within secondary lymphoid organs (SLO). Here we tested whether CCL21 and CXCL13 modulate murine lymphocyte motility in the absence of concentration gradients, using videomicroscopy to directly observe the migration of ...

متن کامل

Polysialylated neuropilin-2 enhances human dendritic cell migration through the basic C-terminal region of CCL21.

Dendritic cell (DC) migration to secondary lymphoid organs is a critical step to properly exert its role in immunity and predominantly depends on the interaction of the chemokine receptor CCR7 with its ligands CCL21 and CCL19. Polysialic acid (PSA) has been recently reported to control CCL21-directed migration of mature DCs. Here, we first demonstrate that PSA present on human mature monocyte-d...

متن کامل

Differential ligand-signaling network of CCL19/CCL21-CCR7 system

Chemokine (C-C motif) receptor 7 (CCR7), a class A subtype G-Protein Coupled Receptor (GPCR), is involved in the migration, activation and survival of multiple cell types including dendritic cells, T cells, eosinophils, B cells, endothelial cells and different cancer cells. Together, CCR7 signaling system has been implicated in diverse biological processes such as lymph node homeostasis, T cell...

متن کامل

Immobilized chemokine fields and soluble chemokine gradients cooperatively shape migration patterns of dendritic cells.

Chemokines orchestrate immune cell trafficking by eliciting either directed or random migration and by activating integrins in order to induce cell adhesion. Analyzing dendritic cell (DC) migration, we showed that these distinct cellular responses depended on the mode of chemokine presentation within tissues. The surface-immobilized form of the chemokine CCL21, the heparan sulfate-anchoring lig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 14  شماره 

صفحات  -

تاریخ انتشار 2011